<HTML>
<HEAD>
<TITLE>SEMINAR NOTICES: Klimeck, 02.07, 2:00; Zemlyanov, 02.08, 10:30 AM</TITLE>
</HEAD>
<BODY background="cid:3253606617_830262">
<FONT FACE="Verdana, Helvetica, Arial"><SPAN STYLE='font-size:12.0px'>&#8220;Atomistic Alloy Disorder in Nanostructures&#8221;<BR>
<BR>
<BR>
Wednesday, February 7, 2007<BR>
2:00 PM<BR>
EE 317<BR>
<BR>
Gerhard Klimeck, Technical Director, NCN<BR>
Professor, Electrical and Computer Engineering<BR>
Purdue University<BR>
<BR>
SEE ATTACHED FLYER FOR DETAILS.<BR>
<BR>
<HR ALIGN=CENTER SIZE="3" WIDTH="95%">&#8220;Introduction to X-ray Photoelectron Spectroscopy and<BR>
XPS Application for Biologically Related Objects&#8221;<BR>
<BR>
Thursday, February 8, 2007<BR>
10:30 AM<BR>
Birck Nanotechnology Building, Room 1001<BR>
<BR>
Dimitry Zemlyanov, Surface Science Application Scientist<BR>
Birck Nanotechnology Center, Purdue University<BR>
<BR>
X-ray Photoelectron Spectroscopy (XPS), which is known as Electron &nbsp;<BR>
Spectroscopy for Chemical Analysis (ESCA), is a powerful research &nbsp;<BR>
tool for the study of the surface of solids. The technique becomes &nbsp;<BR>
widely used for studies of the properties of atoms, molecules, &nbsp;<BR>
solids, and surfaces. The main success of the XPS technique is &nbsp;<BR>
associated with studies of the physical and chemical phenomena on the &nbsp;<BR>
surface of solids. These investigations were limited by relatively &nbsp;<BR>
simple inorganic reactions and not many biologically related objects &nbsp;<BR>
were approached by XPS. There are impartial reasons for low &nbsp;<BR>
involvement of XPS into investigations of biologically related &nbsp;<BR>
objects. First, organic chemistry samples often exhibit high vapor &nbsp;<BR>
pressure and therefore, degas badly in vacuum. This is not compatible &nbsp;<BR>
with XPS technique. Second, X-rays might cause radioactive damage of &nbsp;<BR>
a sample. Third, the C 1s region, which is most informative for &nbsp;<BR>
organic chemistry samples, is narrow and the photoemission peaks can &nbsp;<BR>
over crowd the region.<BR>
<BR>
In this presentation, successful examples of XPS studies of bio- <BR>
related specimen will be presented. In particularly, the systematic &nbsp;<BR>
XPS investigation of four peptide-silane and peptide-silane hybrid &nbsp;<BR>
sol-gel thin films prepared under biologically benign conditions will &nbsp;<BR>
be reported. This work demonstrates a use for XPS to characterized &nbsp;<BR>
biologically inspired surfaces, providing critical information on &nbsp;<BR>
peptide coverage on the surface of the materials. The self-assembling &nbsp;<BR>
layer characterization will be considered on the examples of thiols &nbsp;<BR>
on Au and aryl diazonium molecules on Si (111).<BR>
<BR>
Dmitry Zemlyanov received his Ph.D. in Physics and Mathematics from &nbsp;<BR>
the Novosibirsk State University, Russia. He is currently a Surface &nbsp;<BR>
Science Application Scientist at the Birck Nanotechnology Center and &nbsp;<BR>
is in charge of the Surface Analysis Facility at Birck. Earlier, he &nbsp;<BR>
was a postdoctoral researcher at the Fritz-Haber-Institute, Berlin, &nbsp;<BR>
at Worchester Polytechnic Institute, MA; an adjunct assistant &nbsp;<BR>
professor at the Physics Department, Worchester Polytechnic &nbsp;<BR>
Institute, MA, and a research fellow at Material and Surface Science &nbsp;<BR>
Institute, University of Limerick, Ireland. His research interests &nbsp;<BR>
include surface science, heterogeneous catalysis, surface phenomena.<BR>
<BR>
SPONSORED BY:<BR>
Birck Nanotechnology Center, Bindley Bioscience Center, Discovery &nbsp;<BR>
Park, The NASA Institute for Nanoelectronics and Computing, The &nbsp;<BR>
Network for Computational Nanotechnology, VEECO, NCN Student &nbsp;<BR>
Leadership Council, Department of Chemistry, Department of Physics, &nbsp;<BR>
School of Chemical Engineering, School of Electrical and Computer &nbsp;<BR>
Engineering, School of Mechanical Engineering<BR>
</SPAN></FONT>
</BODY>
</HTML>