TO:

The Engineering Faculty

FROM:

The Faculty of the School of Electrical Engineering

RE:

Change in EE 565

The Faculty of the School of Electrical Engineering has approved the following course changes in EE 565. This action is now submitted to the Engineering Faculty with a recommendation for approval.

FROM:

OF THE SCHOOLS OF ENGINEERING
BY THE COMMITTEE ON
FACULTY RELATIONS

CFR MINUTES #946

DATE 1115195

EE 565. COMPUTER ARCHITECTURE

Sem. 1, class 3, credits 3.

Prerequisite: EE 465 or graduate standing

An introduction to the problems involved in designing and analyzing current machine architectures. Major topics include: hierarchical memory design, pipeline processing, vector machines and numerical applications, and multiprocessor architectures and parallel algorithm design techniques. Evaluation methods for the performance of computer systems to enable the architect to determine the relation between a computer design and the design goals are also explored. Some programming experience is assumed.

Text:

Patterson and J. Hennessy, *Computer Architecture - A Quantitative Approach*, Morgan Kaufmann (1-55-880-069-8).

Weeks

Outline:

Introduction	5.0
Memory System Design Program Characteristics Cache Design Virtual Memory	3.0
Pipeline Design Techniques Memory Requirements Performance Evaluation Pipeline Control Issues Examples	2.0
Vector Computers Case Study Generic Example Numerical Application Data Structures Examples	2.0
Multiprocessors Models	3.0

Interconnection Techniques Memory Design Considerations Numerical Applications and Multiprocessor Algorithms Numerical Example Case Study 2.0 Continuum Model Parallel Algorithm Constructs Synchronisation Techniques Algorithm Mapping and Transformation 2.0 Performance Evaluation Techniques Measures and Parameters of Performance Stochastic Models and Queueing Theory Simulation Models 0.5 Tests

<u>TO</u>:

FE 565. COMPUTER ARCHITECTURE

Sem. 1, class 3, credits 3.

Prerequisite: EE 365 or graduate standing

An introduction to the problems involved in designing and analyzing current machine architectures. Major topics include performance and cost analysis, pipeline processing, vector machines and numerical applications, hierarchical memory design, and multiprocessor architectures. A quantitative approach allowing a computer system designer to determine the extent to which a design meets design goals is emphasized.

Text:

Computer Architecture A Quantitative Approach, Second Edition, David A. Patterson and John L. Hennessy, Morgan Kaufmann Publishers, Inc., 1995, ISBN 1-55860-329-8

Outline:

Introduction Performance and Cost	Weeks .5 1
Pipelining Implementation Hazards Performance Evaluation Advanced Techniques	3
Vector Processors Fundamentals Case Study	2
Memory Hierarchy Program Characteristics Cache Design Main Memory Virtual Memory	3

Input/Output Performance Prediction I/O Devices	2
Multiprocessors Models Interconnection Techniques	2.5
Tests	1

<u>REASON</u>: The proposed changes reflect the change in prerequisite course number, the updated course description and the current outline.

Richard J. Schwartz Professor and Head

		•		
•				