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ABSTRACT. Though the mathematical theory of classical linear elastic-
ity is well established, there still lack some ingredients toward the nu-
merical solution of real technological problems. In this paper we address
one of these critical ingredients, namely the automatic construction of
three-dimensional meshes in arbitrary geometries. Several methods exist
for this purpose, but further improvements are still required to achieve
the needed robustness and generality. We present and discuss the idea of
mesh optimization, namely the manipulation of the mesh geometry and
topology so as to maximize some suitable quality measure. The effects
of mesh optimization in the finite element solution of a linear thermoe-
lastic problem are evaluated. Finally, we report on a recent method
that couples mesh optimization with a posteriori error estimation ideas,
so that mesh refinement in regions of high stress gradients is achieved
through optimization using a suitable space-varying metric. Numerical
results for this last techniques are restricted to two dimensions, as a 3D
implementation is under way.

1. INTRODUCTION

The mathematical theory of linear elasticity being well established, it is
the geometry of the solution domain that still makes it difficult to obtain
an accurate approximation of the exact solution in real-life problems. Thin-
walled structural components resist straightforward finite element treatment
because of mesh degeneration and locking, and plate/shell theory is certainly
the adequate mathematical and numerical tool to avoid this difficulty (the
reader is referred to other lectures of this conference for state-of-the-art de-
velopments in plate/shell theory). There remain, of course, many problems
in linear elasticity with domains that are truly three-dimensional. In these
cases the bottleneck in the analysis is the construction of a three-dimensional
mesh fitting in the domain under consideration.

Much research effort has been devoted, during the last years, to the de-
velopment of effective algorithms for the generation of grids in general 3D
domains. For this process to be automatic, the current choice is that of
unstructured meshes of tetrahedra. Significant progress has been achieved
concerning the robustness and flexibility of unstructured algorithms (frontal
methods, Delaunay-based methods, octree-based methods, and variants of
them). As a consequence, it has been possible to mesh complex domains,
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allowing for massive application of finite element or finite volume solvers to
industrial problems.

Among the several difficulties that still remain to be solved, this presen-
tation concerns that associated with the geometrical quality of the resulting
meshes. Badly distorted elements and over- or under-refined regions are not
unusual in current 3D meshes. A complete, automatic control on the mesh
quality is a primary goal in the present state of the field.

The application of optimization techniques during the generation proce-
dure has proved useful for this purpose. This can be done during both the
element-creation step [1, 2, 3, 4] and/or the a posteriori mesh improving
stage [5, 6, 7, 8,9, 10, 11, 12, 13]. In Section 2 we include the description of
a complete quality-based mesh improving method, addressing the optimiza-
tion of nodal positions and of the connectivity structure of the mesh. In
particular, the node-repositioning technique consists of a non-differentiable
optimization algorithm over the space of nodal positions. The connectivity
changes are based on local cluster reconnection, a technique that can be seen
as the extension of diagonal-swapping but involves significant complexity in
3D [3, 14, 15]. In Section 3 we address the question of how much does the
quality of the mesh affect 3D solid mechanic calculations. For this purpose,
we first solve a simple academic problem with analytical solution, which is
an oversimplified version of a more interesting technological problem. The
knowledge of the exact solution allows us to evaluate the numerical errors
and look at the effect of optimizing the mesh. In Section 4 we report some
sample calculations concerning the stress analysis of a nuclear fuel pellet. A
linear thermoelastic model is used, and the geometries we treat are pellets
with different crack sizes. No exact solution is available, but a consistent
20-30% reduction in the number of conjugate-gradient iterations evidences
a better conditioning of the linear system upon optimization.

Finally, we discuss the coupling of our mesh optimization procedure with
adaptivity. A mesh quality based upon a solution-adapted variable metric
is proposed that automatically leads to suitable refinement and stretching.
The adaptive method that results [16] is a robust, optimization-based, vari-
ant of the ideas of Peraire, Morgan and Peiré [1, 2, 17], further developed
recently by Dompierre et al [18]. Though the ideas are easily extendable to
three-dimensional problems, technical issues arise when dealing with bound-
aries in 3D that have delayed the implementation, so that examples are
presented in two space dimensions.

2. THE MESH OPTIMIZATION ALGORITHM

The mesh optimizer is part of a 3D mesh generation package that has been
built along the last years, more details can be found in [5]. The optimization
sequence starts with a connectivity optimization, followed by repositioning
the nodes at optimal locations for that structure, and so on. The CPU time
required for the full optimization of a mesh consisting of 200,000 tetrahedra,
for example, is 2-3 minutes on a 30 Mflop workstation. Several features of
the optimizer are described below.

2.1. MESH QUALITY

One of the key points in the construction of mesh optimizers is the defi-
nition of the mesh quality. We have adopted a non-differentiable definition:
The quality of the mesh 7 is defined as
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Q- =min{Qx,K €7} (2.1)
where K is a simplicial element belonging to the mesh. For each element,

its quality @ is defined as the product of a shape factor Sy times a size
factor, namely

Qr = Sk exp [—ﬁ2 log? (hK/h*)] (2.2)
hx is the diameter of element K, while ~* is the desired mesh size. The
parameter § determines the width of the size quality function. For the shape
factor Sx we have selected the expressions
o 20.78 Vi /PZ in 2D
K = { 1832.82 Vi / P in 3D (23)

with Vi the volume (area in 2D) of element K and Pg the sum of its
edges. These shape quality functions are simple to evaluate and equivalent
to other popular definitions of quality, such as the inscribed /circumseribed
radius quotient[5].

2.2. NODE REPOSITIONING

With a given connectivity structure, the nodes are repositioned so as to
maximize the mesh quality. Most previous approaches have disregarded
the use of an optimization technique for this purpose and adopted some
variant of the barycenter or Laplace technique; i.e., to move each node to
the centroid of its neighbors. However, it is known that this procedure does
not work in 3D [5, 19], and ad hoc modifications are necessary.

We propose to modify, if necessary, the nodal locations by means of a non-
differentiable optimization technique over the space of nodal coordinates,
using as objective function 1) = —Q); (the change in sign is just because the
terminology is minimum oriented). It is however unthinkable to optimize
the whole mesh simultaneously. Instead, we use the following

: Global algorithm:

: Initialization and Global Parameters: Specify a neighborhood
level NI and a maximum number of iterations M. Set boundary
nodes as non-movable. Initialize an integer auxiliary constant PREV
with 0.

: Tterations:

1. Identify the worst element among those elements of the mesh con-
taining at least one movable node, KWORST. If the number of
movable nodes is zero, stop.

2. If KWORST = PREV, set the four (three in 2D) nodes of
KWORST as non-movable and go back to 1.

3. Identify the nodes in a neighborhood of order NL of KWORST.
The neighbors of order 0 are the nodes that belong to KWORST.
Neighbors of order 1 are those nodes that are not neighbors of
order 0, but are connected by an edge with at least one neighbor
of order 0, and so on.

4. Set as moving nodes those identified in 3 that have not previously
been set as non-movable. With these moving nodes apply the Lo-
cal Algorithm below to optimize the quality of the sub-mesh
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formed by the elements that contain moving nodes. This sub-mesh
is called optimization cluster.

5. Assign to PREV the value KWORST.

6. Go back to 1, or Stop if the number of iterations is equal to M.

It has been observed [7] that it is sufficient to define the optimization
cluster with NL = 1. The optimization space at each global iteration has
dimension of the order of 100, which can be dealt with without difficulty
using the following non-differentiable optimization technique [20] (see also
[21])

: Local Algorithm:

: Let T € R”™ be the vector of coordinates of the moving nodes. We have to
minimize @ = maxg fi, where fx = —Q K is the quality of element K,
with negative sign. Of course, only those elements containing moving
nodes are considered. Let us assign to these elements the numbers
1,2,...,m. If Ty represents the current position of the moving nodes,
the update AT results from the following iterative procedure

1. Compute the search direction

5= =3 1V fic (@) (2.4)

K=1
where {3 }je—y . = 1~ is the solution of

2 2

Z vV [ (Zo)

K=1

)" = argmin [Z nc [0(®o) — fx(@o)]| + L2

- €=
# K=1

(2.5)
with

E:{Eeé}?m | e >0, ZuKzl} (2.6)
K=1
This quadratic programming subproblem is solved using the Active
Set Method (see, e.g., [22]). The scaling factor L in (2.5) is a typical
length.
2. Given a, § € (0,1), compute the step length A* using Armijo’s rule

A* = max{/\ ER | A= G5 k=0,1,2,..), (T + \) — $(To) < Aa HSH?}
(2.7)

3. AT = A\*§ and go back to 1.

REMARK 1. Solving the quadratic problem (2.5) to find the search
direction can be very costly, especially in 3D where the number of
elements containing moving nodes is large. The efficiency can be im-

proved [20] including a user-defined tolerance ¢ and computing the set
1.

Kel. < [¥(m) - fx(@o)| <e (2.8)

Now, the dimension of the quadratic problem is lowered replacing =

by =. defined by

= = {ﬁ ERT | px >0, > pr =1, ug =0if K ¢ IE} (2.9)

K=1
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REMARK 2. The iterations of the Local Algorithm must be stopped
when the change in the objective function is below some tolerance
TOL,.. A good scale for this tolerance is the value taken for e: We
usually adopt TOL;,. = ¢/10.

2.3. NODE RECONNECTION

Node reconnection is also carried out iteratively. If K is the worst element
in the mesh (i.e., Q7 < Qg, VK), at each iteration the submesh formed
by K and its neighbors (elements sharing a node or an edge with K) is
considered. On this submesh several operations are wvirtually performed,
until one is found that yields a better quality. This operation is then really
performed (the details can be found in [7]). The operations considered are
similar to those of [14, 15], they consist of defining a cluster, removing its
interior, and either connecting all the faces (edges in 2D) in the cluster
boundary to one of the boundary nodes or connecting them to a node at the
center of the cluster. Two types of clusters are considered, nodal clusters are
all elements that share some given node, and edge clusters are all elements
that share some given edge. In the case of nodal clusters the center of the
cluster is defined averaging the coordinates of the cluster vertices, while in
the case of edge clusters it is defined as the center of the central edge. For
the two-dimensional case, the operations are depicted in Fig. 1. Special
care must be taken with edges and nodes belonging to the boundary. This
is handled by means of projections in 2D, and is the main difficulty for the
extension of the algorithm to 3D.

It is interesting to point out that the reconnection strategy above is much
more efficient than the one earlier proposed in [6]. Marcum and Marcum
& Weatherill [3, 4] have incorporated some local reconnection procedures
during the creation of elements, with excellent results.

3. A TEST EXAMPLE WITH ANALYTICAL SOLUTION

In the first two examples we show here, 3 is set to zero, meaning that
only the shape quality of the elements is considered. Moreover, the algorithm
leaves the surface mesh untouched, so that we are looking for the optimal
3D mesh compatible with a given surface mesh.

An ongoing application of elastic analysis to the nuclear industry provided
us with the occasion to evaluate the impact of the mesh quality on finite
element computations. The strong ellipticity of the elastic operator suggests
that this problem is not highly sensitive to the presence of a few distorted
elements within the mesh. In addition, the test reported in this section was
conducted on a problem with smooth analytical solution. Our results can
thus be viewed as a lower bound for the influence of the mesh quality on
actual numerical computations. Though the optimization of the mesh is
restricted to, say, the worst 1 percent of the elements, it is observed that
this significantly reduces the error in the determination of the maximum
stresses, together with the number of conjugate-gradient iterations required
to solve the linear system.

As an illustrative academic example, we tabulate below the results of a
systematic study for a thermoelastic cylinder subject to a parabolic temper-
ature profile with meshes of increasing size. The mesh spacings are approx-
imately uniform throughout the domain. Listed are the number of elements
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Ficure 1. Operations allowed in the 2D mesh optimization
algorithm. Notice the distinction between node and edge
clusters, and between internal and boundary nodes. The 3D
variant is analogous.

Mesh A B C D
Elements 21369 | 52464 | 68868 | 165769
Quality (as generated) | 0.103 | 0.004 | 0.004 | 3E-06
L>-error in o,, 8.5% | 15% |10.1% | 5.9%
L>-error in oy 16% | 14% | 13.9% | 7.5%
CG iter. 307 453 518 1593
Quality (optimized) | 0.479 | 0.386 | 0.363 | 0.404
L>-error in o,, 8.8% | 7.8% | 7.2% | 4.6%
L>-error in oy 6.1% | 5.7% | 5.5% | 4.1%
CG iter. 256 326 369 477

TaBLE 1. Effect of mesh optimization on the maximum er-
ror in the radial and tangential components of the stress,
and on the number of conjugate gradient iterations needed
to solve the linear system. The problem is that of a linear
thermoelastic cylinder subject to a homogeneous heat source.

of each mesh, its quality, the errors in the sup norm of the radial and tan-
gential components of the stress, and the number of (diag-preconditioned)
conjugate gradient iterations to solve the linear system.
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It is clear from Table 1 that even in this simple case stress pointwise errors
can be reduced by half using optimized meshes, saving at the same time up
to 70% of linear solver iterations. It is worth mentioning that the error in
the displacement field is quite insensitive to the mesh quality (at least in
this problem with smooth solution).

The results in Table 1 bring to light an interesting phenomenon related to
adaptive analyses. Though the usual condition of ”a regular family of trian-
gulations ” is always present in mathematical papers, it is seldom checked in
practice. Notice that, though mesh B has 2.5 times the number of elements
of mesh A and all meshes come from the same generation algorithm, the
error in mesh B is larger than in mesh A if no optimization is performed.
On the other hand, if we look at the results obtained with optimized meshes,
the error decreases steadily when the number of elements is increased. Also,
to reduce the error it is more convenient to optimize mesh A than to build
the refined mesh C. Smaller elements lead to smaller errors only if their
quality is high enough. The meshes required in adaptive analyses have large
discretization gradients, a condition that imposes no difficulty to 2D mesh
generators but could make 3D ones to yield bad quality elements. For adap-
tive procedures in 3D to be effective, both the elements’ size and their quality
have to be kept under control, as both have commensurate effects on the
error (particularly on pointwise stress errors).

We should remark that the average element quality (Q), which is quite
high for our meshes, plays no role in the results shown in Table 1. As just the
(few) worst elements are modified, Q exhibits the following small changes
due to optimization: Mesh A, 0.69 — 0.71; Mesh B, 0.72 — 0.76; Mesh C,
0.68 — 0.71; Mesh D, 0.697 — 0.703.

4. SAMPLE RESULTS

It is interesting to consider applications to more technological problems,
including locally refined meshes for problems with singularities (see for other
meshes in solid and fluid mechanics, our method has also proved useful as a
way to delay remeshing in problems with moving boundaries [23]).

We consider a nuclear fuel pellet made of UOs, with a radius of 0.531
cm and height of 1.2 em. The temperature inside it is approximated by
T(r) = [2.468 x 10 — 5.286 x 10°%] °C, corresponding to a linear power
of 599.1 W/em. For more details concerning the physical problem the reader
is referred to [24] and references therein. Three pellets are modeled, with
cracks of size 20%, 40% and 60% of the pellet radius. The corresponding
meshes can be seen in Fig. 2. Though the purpose of the analysis was
to determine the size of the region surrounding the crack where stresses are
relieved, the geometry and meshes serve also to test the optimizing procedure
in real problems.

In Fig. 3 top views of the pellets showing the distributions of von Mises’
equivalent stresses for the three cases can be found. A side view is plotted in
Fig. 4. Notice the low-stress zones surrounding the crack mouth. The qual-
ity of the Delaunay meshes was 0.002 —0.004, and the optimizer successfully
took this value to 0.4. Remember that in these cases the surface mesh is not
modified. Again, only about one percent of the elements were changed, the
average quality remained practically the same after optimization (see Table
2).
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FiGURE 2. Meshes: (a) Crack size 20%, 15519 nodes, 80887
elements, (b) Crack size 40%, 14291 nodes, 74380 elements,
(c) Crack size 60%, 17788 nodes, 93260 elements.

@ (b) ©

Ficure 3. Top views of the distributions of von Mises’
equivalent stresses. (a) Crack size 20%, (b) 40%, (c) 60%.
Darker zones correspond to higher stresses. The domain has
been deformed according to the displacement field (suitably
scaled to render it visible).

Mesh Crack 20% | Crack 40% | Crack 60%

Elements 80887 74380 93260

Quality (as generated) 0.002 0.002 0.004

Average quality 0.766 0.742 0.744
CG iter. 990 966 1062

Quality (optimized) 0.421 0.393 0.433

Average quality 0.772 0.743 0.748
CG iter. e 711 781

TABLE 2. Results of optimization on the meshes for the
cracked-pellet geometry.
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Ficure 4. Side view of the distribution of von Mises’ equiv-
alent stresses for a pellet with crack size 40%.

Notice from Table 2 that mesh optimization consistently reduces the num-
ber of conjugate gradient iterations by 20-30%. This is typical of all our
tests. From the analysis in the previous section we believe that the savings
in CPU time brought by optimization have a counterpart in stress pointwise
errors away from the singularity.

5. USING THE OPTIMIZER FOR ADAPTIVE PURPOSES: ADAPTIVE
ANISOTROPIC MESH OPTIMIZATION

In the previous sections, we have shown how the optimizer succeeds in
finding meshes of high shape quality compatible with some given surface
triangulation. This was shown to improve the accuracy of finite element
computations. One can go further and use the optimizer for adaptive pur-
poses, as recently proposed [16]. We now turn to show how this can be
done.

There exist two alternatives for coupling our optimizer with a posteriori
error estimation. In Eq. 2.2, h* can be defined at each point of the do-
main according to some local error indicator [25, 26]. In this alternative,
the optimizer comes to replace the remeshing of the computational domain
that is usually performed. We have adopted another strategy, h* is assumed
constant throughout the domain and the optimizer is run without modifica-
tions, but lengths and volumes are evaluated using a solution-adapted metric,
instead of the euclidean metric, in the domain. The space-varying adapted
metric finds its rationale in interpolation error estimates, and has been dis-
cussed in [1, 2, 18]. Some details of this adaptive optimization method are
presented below.
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5.1. SOLUTION-ADAPTED METRIC

We recall the solution-adapted metric proposed in Ref. [18]. Assume
that a function u is to be interpolated with piecewise linear finite element
functions on a mesh of conforming triangles. The interpolation error on an
edge will not be isotropic but instead depend on the direction t of the edge,
according to the local value of

|D?u(t, t)| = Zttjax o7, (5.1)

where {t;} stand for the cartesian components of the unit vector t. This
suggests the use of D?u as a metric tensor, but it fails to be positive definite.
Instead, Dompierre et al introduce the metric tensor G = ‘Dzu‘. As D*u
is symmetric, it accepts a decomposition of the form D?*u = QAQT, with
A =diag{A{, A2} the diagonal eigenvalue matrix and Q orthogonal. G is
defined as Q|A| QT, with |A| =diag{|\1],|A2|}. This definition provides a
space-varying anisotropic metric G which is at least positive semi-definite,
but a zero eigenvalue of G poses no difficulty, as it leads to infinite mesh
sizes that are automatically inhibited by the finiteness of the computational
domain €.

In the elasticity case, a slight modification is needed since the unknown
field is not a scalar but a vector. We have taken G as

G=+ /Z (D2u;)? (5.2)

where D?u; stands for the Hessian of the i-th component of the displace-
ment field. The Hessians are squared and added, then the resulting matrix
is diagonalized and the positive square root of each eigenvalue is used to
construct G.

We apply the optimization method with the quality defined according
0 (2.2), measuring lengths and areas under the metric G. The only user-
defined parameter is h*, which is the same throughout the domain and gov-
erns the quantity of elements in the optimized mesh. An estimation of h* is
straightforward: The area of the domain with respect to G is

volg(Q) = > Vi = Y Vi(det G)'/ (5.3)

Ker Ker

where ‘7]( is the area of K in the euclidean metric. The number of elements
in the optimized mesh will be close to (4/v/3) volg(€)/(h*)?, and from this

expression the desired h* is readily obtained.

5.2. HESSIAN RECOVERY

It remains to introduce a suitable Hessian D?u, the optimal one coming
from the exact solution which is obviously not known. The alternative is to
recover the second derivative of the numerical solution uy € Vj, Vj, standing
for the finite element space associated with the mesh that will be optimized.

We have implemented the method proposed in [1, 2], namely

7 1 [1 dup, ONL  Ouy, ON!
;= - () /92 (8962' 0x; + dx; Ox; aQ (54)
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where HZ»Ij is the value at node I of the 7j-component of the recovered
Hessian, MI{I is the I-th diagonal entry of the lumped mass matrix, u, is

the numerical solution on the previous mesh and N/ the I-th basis function.
Eq. 5.4 is a discrete version of the identity

/wD2u dQ = / Vw @ VudQ (5.5)
Q Q

which holds for any w vanishing on the boundary 9€2. This equation is
used to determine H;; for all nodes not belonging to the boundary. H;;
is then extrapolated to the boundary by weakly imposing the condition
JH;;/0n = 0, with n the normal to 0.

5.3. A TWO-DIMENSIONAL APPLICATION EXAMPLE

For the proposed adaptive procedure to be effective, both the boundary
mesh and the interior mesh need to be modified. A suitable abstraction of
the boundary is needed, typically by means of B-splines and other geometric
design entities. This renders the implementation quite involved, and our
software up to now only supports 2D cases.

Once the computational domain’s boundary and applied forces are de-
fined, a first mesh is constructed. This mesh can be very simple, i.e., if the
domain is a rectangle, it can consist of just two triangles. This first mesh is
then optimized using as metric the euclidean one, so as to get a second mesh
with the desired number of elements. A finite element computation is carried
out with this second mesh, and with the results a solution-adapted metric
is constructed. The algorithm proceeds optimizing the mesh under this new
metric, finding a new approximate solution with the improved mesh, and so
on. Once two successive meshes are close enough, the process is said to have
converged. This typically occurs after three to five adaptive steps.

As an example, let us apply our adaptive optimization procedure to ana-
lyze the interaction between two cracks. The cracks are in collinear config-
uration, with symmetry disturbed by rotation (see Fig. 5). The right crack
is rotated a ten-degree angle, a situation that is known to maximize the in-
teraction [27]. This is a quite challenging problem for adaptive techniques,
since the stress intensity factors (SIFs) are not the same for all crack tips.
The right tip of the left crack and the left tip of the right crack have SIFs
about 1.6 times those of the remaining two crack tips. An effective adaptive
technique should automatically refine the mesh near crack tips, with greater
refinement near those tips of larger SIF.

In Fig. 6 we show the first mesh, with which the process began, the uni-
form mesh after optimization using the euclidean metric, and the adaptively
optimized mesh after four steps. Details of the optimized mesh can be found
in Fig. 7. The most critical crack tips have been correctly identified, the
mesh size being approximately 5 times larger at the outer crack tips than
in the inner ones. In Fig. 8 we include the isocontours of the von Mises’
equivalent stress near the cracks.

6. CONCLUSIONS

As said in the introduction, while in other topics of elasticity and vis-
coelasticity there are several fundamental problems that remain open, the
main difficulties in 3D linear elasticity are of numerical nature, one of the
most challenging ones being the construction of suitable meshes in general
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FIGURE 6. (a) First mesh. (b) Uniform mesh with the de-
sired number of elements. (c) Adaptively optimized mesh,

4917 nodes, 9589 elements.



MESH OPTIMIZATION IN ELASTICITY 13

AV, /> VA AN

e
dl

A o

R AT A KRS
W SPY) )
e

K3
N

o
A

N
OR
AKX
Aﬂm

|
%
<]

a0y

A
\
£

PR
e
N

74

&
5

o

A

) KA

S g ATAN AN N
PRRRARKRY

g
A RGN
VI AT N ST ek
SNSBRRENOADARA RO
PN
7\ DT N

Sy

VRLR SRR

(ﬁm

N ¥
R

RO

7
AKX

KRN
SRR

Ficure 7. Details of the optimized mesh.

domains. By suitable meshes we understand meshes consisting of elements
that exhibit both the appropriate shape and the appropriate size to avoid
excessive numerical inaccuracies.

We have presented a full mesh optimization procedure that deals with
both shape and size within a unified methodology. It was first shown to
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Ficure 8. Isocontours of the von Mises’ equivalent stress
computed on the optimized mesh.

work for 3D meshes, as it eliminates the few badly-distorted elements that
usually persist after the initial generation step (it was shown, in addition,
that shape distortions can have an impact on accuracy of the same order as
that of mesh size). Later, as the method is valid for any number of space
dimensions but our implementation is limited to 2D, it was shown that,
in fact, the optimizer can be used to generate adaptively refined meshes
starting from ”almost nothing” (i.e., a mesh as simple as that of Fig. 6(a)).

In this way, it is now possible to solve problems in elasticity or other
fields that were not tractable a few years ago, and mesh optimization tech-
niques have proved to be a valuable help for this purpose. Besides the full
implementation handling 3D geometric abstractions, that is under way, an
interesting extension concerns time-dependent problems. If the regions de-
serving refinement evolve with time, it is not obvious that the optimization
algorithm as proposed above will be able to follow this evolution with a fast
enough convergence rate to make it practical.
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