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Abstract� Though the mathematical theory of classical linear elastic�
ity is well established� there still lack some ingredients toward the nu�
merical solution of real technological problems� In this paper we address
one of these critical ingredients� namely the automatic construction of
three�dimensional meshes in arbitrary geometries� Several methods exist
for this purpose� but further improvements are still required to achieve
the needed robustness and generality� We present and discuss the idea of
mesh optimization� namely the manipulation of the mesh geometry and
topology so as to maximize some suitable quality measure� The e�ects
of mesh optimization in the �nite element solution of a linear thermoe�
lastic problem are evaluated� Finally� we report on a recent method
that couples mesh optimization with a posteriori error estimation ideas�
so that mesh re�nement in regions of high stress gradients is achieved
through optimization using a suitable space�varying metric� Numerical
results for this last techniques are restricted to two dimensions� as a �D
implementation is under way�

�� Introduction

The mathematical theory of linear elasticity being well established� it is
the geometry of the solution domain that still makes it di�cult to obtain
an accurate approximation of the exact solution in real�life problems� Thin�
walled structural components resist straightforward �nite element treatment
because of mesh degeneration and locking� and plate�shell theory is certainly
the adequate mathematical and numerical tool to avoid this di�culty �the
reader is referred to other lectures of this conference for state�of�the�art de�
velopments in plate�shell theory�� There remain� of course� many problems
in linear elasticity with domains that are truly three�dimensional� In these
cases the bottleneck in the analysis is the construction of a three�dimensional
mesh �tting in the domain under consideration�
Much research e	ort has been devoted� during the last years� to the de�

velopment of e	ective algorithms for the generation of grids in general 
D
domains� For this process to be automatic� the current choice is that of
unstructured meshes of tetrahedra� Signi�cant progress has been achieved
concerning the robustness and �exibility of unstructured algorithms �frontal
methods� Delaunay�based methods� octree�based methods� and variants of
them�� As a consequence� it has been possible to mesh complex domains�
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allowing for massive application of �nite element or �nite volume solvers to
industrial problems�
Among the several di�culties that still remain to be solved� this presen�

tation concerns that associated with the geometrical quality of the resulting
meshes� Badly distorted elements and over� or under�re�ned regions are not
unusual in current 
D meshes� A complete� automatic control on the mesh
quality is a primary goal in the present state of the �eld�
The application of optimization techniques during the generation proce�

dure has proved useful for this purpose� This can be done during both the
element�creation step �
� �� 
� �� and�or the a posteriori mesh improving
stage ��� �� �� �� �� 
�� 

� 
�� 

�� In Section � we include the description of
a complete quality�based mesh improving method� addressing the optimiza�
tion of nodal positions and of the connectivity structure of the mesh� In
particular� the node�repositioning technique consists of a non�di	erentiable
optimization algorithm over the space of nodal positions� The connectivity
changes are based on local cluster reconnection� a technique that can be seen
as the extension of diagonal�swapping but involves signi�cant complexity in

D �
� 
�� 
��� In Section 
 we address the question of how much does the
quality of the mesh a	ect 
D solid mechanic calculations� For this purpose�
we �rst solve a simple academic problem with analytical solution� which is
an oversimpli�ed version of a more interesting technological problem� The
knowledge of the exact solution allows us to evaluate the numerical errors
and look at the e	ect of optimizing the mesh� In Section � we report some
sample calculations concerning the stress analysis of a nuclear fuel pellet� A
linear thermoelastic model is used� and the geometries we treat are pellets
with di	erent crack sizes� No exact solution is available� but a consistent
���
�� reduction in the number of conjugate�gradient iterations evidences
a better conditioning of the linear system upon optimization�
Finally� we discuss the coupling of our mesh optimization procedure with

adaptivity� A mesh quality based upon a solution�adapted variable metric
is proposed that automatically leads to suitable re�nement and stretching�
The adaptive method that results �
�� is a robust� optimization�based� vari�
ant of the ideas of Peraire� Morgan and Peir�o �
� �� 
��� further developed
recently by Dompierre et al �
��� Though the ideas are easily extendable to
three�dimensional problems� technical issues arise when dealing with bound�
aries in 
D that have delayed the implementation� so that examples are
presented in two space dimensions�

�� The mesh optimization algorithm

The mesh optimizer is part of a 
D mesh generation package that has been
built along the last years� more details can be found in ���� The optimization
sequence starts with a connectivity optimization� followed by repositioning
the nodes at optimal locations for that structure� and so on� The CPU time
required for the full optimization of a mesh consisting of ������� tetrahedra�
for example� is ��
 minutes on a 
� M�op workstation� Several features of
the optimizer are described below�

��
� Mesh quality

One of the key points in the construction of mesh optimizers is the de��
nition of the mesh quality� We have adopted a non�di	erentiable de�nition�
The quality of the mesh � is de�ned as
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Q� � min fQK � K � �g ���
�

where K is a simplicial element belonging to the mesh� For each element�
its quality QK is de�ned as the product of a shape factor SK times a size
factor� namely

QK � SK exp
���� log� �hK�h��� �����

hK is the diameter of element K� while h� is the desired mesh size� The
parameter � determines the width of the size quality function� For the shape
factor SK we have selected the expressions

SK �

�
����� VK�P

�
K in �D


�
���� VK�P
�
K in 
D

���
�

with VK the volume �area in �D� of element K and PK the sum of its
edges� These shape quality functions are simple to evaluate and equivalent
to other popular de�nitions of quality� such as the inscribed�circumscribed
radius quotient����

���� Node repositioning

With a given connectivity structure� the nodes are repositioned so as to
maximize the mesh quality� Most previous approaches have disregarded
the use of an optimization technique for this purpose and adopted some
variant of the barycenter or Laplace technique� i�e�� to move each node to
the centroid of its neighbors� However� it is known that this procedure does
not work in 
D ��� 
��� and ad hoc modi�cations are necessary�
We propose to modify� if necessary� the nodal locations by means of a non�

di	erentiable optimization technique over the space of nodal coordinates�
using as objective function � � �Q� �the change in sign is just because the
terminology is minimum oriented�� It is however unthinkable to optimize
the whole mesh simultaneously� Instead� we use the following

� Global algorithm�

� Initialization and Global Parameters� Specify a neighborhood
level NL and a maximum number of iterations M � Set boundary
nodes as non�movable� Initialize an integer auxiliary constant PREV
with ��

� Iterations�


� Identify the worst element among those elements of the mesh con�
taining at least one movable node� KWORST � If the number of
movable nodes is zero� stop�

�� If KWORST � PREV � set the four �three in �D� nodes of
KWORST as non�movable and go back to 
�


� Identify the nodes in a neighborhood of order NL of KWORST �
The neighbors of order � are the nodes that belong to KWORST �
Neighbors of order 
 are those nodes that are not neighbors of
order �� but are connected by an edge with at least one neighbor
of order �� and so on�

�� Set as moving nodes those identi�ed in 
 that have not previously
been set as non�movable� With these moving nodes apply the Lo�
cal Algorithm below to optimize the quality of the sub�mesh
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formed by the elements that contain moving nodes� This sub�mesh
is called optimization cluster�

�� Assign to PREV the value KWORST �
�� Go back to 
� or Stop if the number of iterations is equal to M �

It has been observed ��� that it is su�cient to de�ne the optimization
cluster with NL � 
� The optimization space at each global iteration has
dimension of the order of 
��� which can be dealt with without di�culty
using the following non�di	erentiable optimization technique ���� �see also
��
��

� Local Algorithm�

� Let x � �n be the vector of coordinates of the moving nodes� We have to
minimize � � maxK fK � where fK � �QK is the quality of element K�
with negative sign� Of course� only those elements containing moving
nodes are considered� Let us assign to these elements the numbers

� �� ����m� If x� represents the current position of the moving nodes�
the update �x results from the following iterative procedure

� Compute the search direction

� � �
mX

K��

��KrfK�x�� �����

where f��KgK�������m � �� is the solution of

�� � argmin
��	

���
�

mX
K��

�K ���x��� fK�x���

��
� L�

					
mX

K��

�KrfK�x��
					
�

��
�����

with

� �



� � �m j �K � ��

mX
K��

�K � 


�
�����

This quadratic programming subproblem is solved using the Active
Set Method �see� e�g�� ������ The scaling factorL in ����� is a typical
length�

�� Given 	� � � ��� 
�� compute the step length 
� using Armijo�s rule

� � max

n

 � � j 
 � �k�k � �� 
� �� ����� ��x� � 
��� ��x�� � 
	

		�		�o
�����


� �x � 
�� and go back to 
�

Remark �� Solving the quadratic problem ����� to �nd the search
direction can be very costly� especially in 
D where the number of
elements containing moving nodes is large� The e�ciency can be im�
proved ���� including a user�de�ned tolerance � and computing the set
I�

K � I� �� j��x��� fK�x��j � � �����

Now� the dimension of the quadratic problem is lowered replacing �
by �� de�ned by

�� �



� � �m j �K � ��

mX
K��

�K � 
� �K � � if K �� I�
�

�����
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Remark �� The iterations of the Local Algorithm must be stopped
when the change in the objective function is below some tolerance
TOLloc� A good scale for this tolerance is the value taken for �� We
usually adopt TOLloc � ��
��

��
� Node reconnection

Node reconnection is also carried out iteratively� If K is the worst element
in the mesh �i�e�� QK � QK � 	K�� at each iteration the submesh formed
by K and its neighbors �elements sharing a node or an edge with K� is
considered� On this submesh several operations are virtually performed�
until one is found that yields a better quality� This operation is then really

performed �the details can be found in ����� The operations considered are
similar to those of �
�� 
��� they consist of de�ning a cluster� removing its
interior� and either connecting all the faces �edges in �D� in the cluster
boundary to one of the boundary nodes or connecting them to a node at the
center of the cluster� Two types of clusters are considered� nodal clusters are
all elements that share some given node� and edge clusters are all elements
that share some given edge� In the case of nodal clusters the center of the
cluster is de�ned averaging the coordinates of the cluster vertices� while in
the case of edge clusters it is de�ned as the center of the central edge� For
the two�dimensional case� the operations are depicted in Fig� 
� Special
care must be taken with edges and nodes belonging to the boundary� This
is handled by means of projections in �D� and is the main di�culty for the
extension of the algorithm to 
D�
It is interesting to point out that the reconnection strategy above is much

more e�cient than the one earlier proposed in ���� Marcum and Marcum
 Weatherill �
� �� have incorporated some local reconnection procedures
during the creation of elements� with excellent results�

�� A test example with analytical solution

In the �rst two examples we show here� � is set to zero� meaning that
only the shape quality of the elements is considered� Moreover� the algorithm
leaves the surface mesh untouched� so that we are looking for the optimal

D mesh compatible with a given surface mesh�
An ongoing application of elastic analysis to the nuclear industry provided

us with the occasion to evaluate the impact of the mesh quality on �nite
element computations� The strong ellipticity of the elastic operator suggests
that this problem is not highly sensitive to the presence of a few distorted
elements within the mesh� In addition� the test reported in this section was
conducted on a problem with smooth analytical solution� Our results can
thus be viewed as a lower bound for the in�uence of the mesh quality on
actual numerical computations� Though the optimization of the mesh is
restricted to� say� the worst 
 percent of the elements� it is observed that
this signi�cantly reduces the error in the determination of the maximum
stresses� together with the number of conjugate�gradient iterations required
to solve the linear system�
As an illustrative academic example� we tabulate below the results of a

systematic study for a thermoelastic cylinder subject to a parabolic temper�
ature pro�le with meshes of increasing size� The mesh spacings are approx�
imately uniform throughout the domain� Listed are the number of elements
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Interior
clusters

Boundary
clusters

Edge-
based

Node-
based

Figure �� Operations allowed in the �D mesh optimization
algorithm� Notice the distinction between node and edge
clusters� and between internal and boundary nodes� The �D
variant is analogous�

Mesh A B C D
Elements �

�� ����� ����� 
�����

Quality �as generated� ��
�
 ����� ����� 
E���
L��error in 
rr ���� 
�� 
��
� ����
L��error in 
tt 
�� 
�� 

��� ����
CG iter� 
�� ��
 �
� 
��


Quality �optimized� ����� ��
�� ��
�
 �����
L��error in 
rr ���� ���� ���� ����
L��error in 
tt ��
� ���� ���� ��
�
CG iter� ��� 
�� 
�� ���
Table �� E	ect of mesh optimization on the maximum er�
ror in the radial and tangential components of the stress�
and on the number of conjugate gradient iterations needed
to solve the linear system� The problem is that of a linear
thermoelastic cylinder subject to a homogeneous heat source�

of each mesh� its quality� the errors in the sup norm of the radial and tan�
gential components of the stress� and the number of �diag�preconditioned�
conjugate gradient iterations to solve the linear system�
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It is clear from Table 
 that even in this simple case stress pointwise errors
can be reduced by half using optimized meshes� saving at the same time up
to ��� of linear solver iterations� It is worth mentioning that the error in
the displacement �eld is quite insensitive to the mesh quality �at least in
this problem with smooth solution��
The results in Table 
 bring to light an interesting phenomenon related to

adaptive analyses� Though the usual condition of !a regular family of trian�
gulations ! is always present in mathematical papers� it is seldom checked in
practice� Notice that� though mesh B has ��� times the number of elements
of mesh A and all meshes come from the same generation algorithm� the
error in mesh B is larger than in mesh A if no optimization is performed�
On the other hand� if we look at the results obtained with optimized meshes�
the error decreases steadily when the number of elements is increased� Also�
to reduce the error it is more convenient to optimize mesh A than to build
the re�ned mesh C� Smaller elements lead to smaller errors only if their
quality is high enough� The meshes required in adaptive analyses have large
discretization gradients� a condition that imposes no di�culty to �D mesh
generators but could make 
D ones to yield bad quality elements� For adap�
tive procedures in 
D to be e	ective� both the elements� size and their quality
have to be kept under control� as both have commensurate e	ects on the
error �particularly on pointwise stress errors��
We should remark that the average element quality �Q�� which is quite

high for our meshes� plays no role in the results shown in Table 
� As just the
�few� worst elements are modi�ed� Q exhibits the following small changes
due to optimization� Mesh A� ���� 
 ���
� Mesh B� ����
 ����� Mesh C�
����
 ���
� Mesh D� �����
 ����
�

�� Sample results

It is interesting to consider applications to more technological problems�
including locally re�ned meshes for problems with singularities �see for other
meshes in solid and �uid mechanics� our method has also proved useful as a
way to delay remeshing in problems with moving boundaries ��
���
We consider a nuclear fuel pellet made of UO�� with a radius of ���



cm and height of 
�� cm� The temperature inside it is approximated by
T �r� �

�
������ 
�� � ������ 
��r�� �C� corresponding to a linear power

of ����
 W�cm� For more details concerning the physical problem the reader
is referred to ���� and references therein� Three pellets are modeled� with
cracks of size ���� ��� and ��� of the pellet radius� The corresponding
meshes can be seen in Fig� �� Though the purpose of the analysis was
to determine the size of the region surrounding the crack where stresses are
relieved� the geometry and meshes serve also to test the optimizing procedure
in real problems�
In Fig� 
 top views of the pellets showing the distributions of von Mises�

equivalent stresses for the three cases can be found� A side view is plotted in
Fig� �� Notice the low�stress zones surrounding the crack mouth� The qual�
ity of the Delaunay meshes was ������������ and the optimizer successfully
took this value to ���� Remember that in these cases the surface mesh is not
modi�ed� Again� only about one percent of the elements were changed� the
average quality remained practically the same after optimization �see Table
���
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(a) (b) (c)

Figure �� Meshes� �a� Crack size ��	� 
��
� nodes� 
�

�
elements� �b� Crack size ��	� 
���
 nodes� ���
� elements�
�c� Crack size ��	� 
��

 nodes� ����� elements�

(a) (b) (c)

Figure �� Top views of the distributions of von Mises�
equivalent stresses� �a� Crack size ��	� �b� ��	� �c� ��	�
Darker zones correspond to higher stresses� The domain has
been deformed according to the displacement �eld �suitably
scaled to render it visible��

Mesh Crack ��� Crack ��� Crack ���
Elements ����� ��
�� �
���

Quality �as generated� ����� ����� �����
Average quality ����� ����� �����

CG iter� ��� ��� 
���
Quality �optimized� ����
 ��
�
 ���


Average quality ����� ����
 �����

CG iter� ��� �

 ��

Table �� Results of optimization on the meshes for the
cracked�pellet geometry�
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Figure �� Side view of the distribution of von Mises� equiv�
alent stresses for a pellet with crack size ��	�

Notice from Table � that mesh optimization consistently reduces the num�
ber of conjugate gradient iterations by ���
��� This is typical of all our
tests� From the analysis in the previous section we believe that the savings
in CPU time brought by optimization have a counterpart in stress pointwise
errors away from the singularity�

�� Using the optimizer for adaptive purposes� Adaptive

anisotropic mesh optimization

In the previous sections� we have shown how the optimizer succeeds in
�nding meshes of high shape quality compatible with some given surface
triangulation� This was shown to improve the accuracy of �nite element
computations� One can go further and use the optimizer for adaptive pur�
poses� as recently proposed �
��� We now turn to show how this can be
done�
There exist two alternatives for coupling our optimizer with a posteriori

error estimation� In Eq� ���� h� can be de�ned at each point of the do�
main according to some local error indicator ���� ���� In this alternative�
the optimizer comes to replace the remeshing of the computational domain
that is usually performed� We have adopted another strategy� h� is assumed
constant throughout the domain and the optimizer is run without modi�ca�
tions� but lengths and volumes are evaluated using a solution�adapted metric�

instead of the euclidean metric� in the domain� The space�varying adapted
metric �nds its rationale in interpolation error estimates� and has been dis�
cussed in �
� �� 
��� Some details of this adaptive optimization method are
presented below�
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��
� Solution�adapted metric

We recall the solution�adapted metric proposed in Ref� �
��� Assume
that a function u is to be interpolated with piecewise linear �nite element
functions on a mesh of conforming triangles� The interpolation error on an
edge will not be isotropic but instead depend on the direction t of the edge�
according to the local value of

��D�u�t� t�
�� �

������
X
i�j

titj
��u

�xi�xj

������ ���
�

where ftig stand for the cartesian components of the unit vector t� This
suggests the use of D�u as a metric tensor� but it fails to be positive de�nite�
Instead� Dompierre et al introduce the metric tensor G �

��D�u
��� As D�u

is symmetric� it accepts a decomposition of the form D�u � Q"QT � with
" �diagf
�� 
�g the diagonal eigenvalue matrix and Q orthogonal� G is
de�ned as Q j"jQT � with j"j �diagfj
�j � j
�jg� This de�nition provides a
space�varying anisotropic metric G which is at least positive semi�de�nite�
but a zero eigenvalue of G poses no di�culty� as it leads to in�nite mesh
sizes that are automatically inhibited by the �niteness of the computational
domain #�
In the elasticity case� a slight modi�cation is needed since the unknown

�eld is not a scalar but a vector� We have taken G as

G � �

sX
i

�D�ui�
� �����

where D�ui stands for the Hessian of the i�th component of the displace�
ment �eld� The Hessians are squared and added� then the resulting matrix
is diagonalized and the positive square root of each eigenvalue is used to
construct G�
We apply the optimization method with the quality de�ned according

to ������ measuring lengths and areas under the metric G� The only user�
de�ned parameter is h�� which is the same throughout the domain and gov�
erns the quantity of elements in the optimized mesh� An estimation of h� is
straightforward� The area of the domain with respect to G is

volG�#� �
X
K��

VK �
X
K��

eVK�detG���� ���
�

where eVK is the area of K in the euclidean metric� The number of elements
in the optimized mesh will be close to ���

p

� volG�#���h���� and from this

expression the desired h� is readily obtained�

���� Hessian recovery

It remains to introduce a suitable Hessian D�u� the optimal one coming
from the exact solution which is obviously not known� The alternative is to
recover the second derivative of the numerical solution uh � Vh� Vh standing
for the �nite element space associated with the mesh that will be optimized�
We have implemented the method proposed in �
� ��� namely

HI
ij � �

�
M II

L

��� Z
�




�

�
�uh
�xi

�N I

�xj
�
�uh
�xj

�N I

�xi

�
d# �����
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where HI
ij is the value at node I of the ij�component of the recovered

Hessian� M II
L is the I�th diagonal entry of the lumped mass matrix� uh is

the numerical solution on the previous mesh and N I the I�th basis function�
Eq� ��� is a discrete version of the identityZ

�

wD�u d# �

Z
�

rw � ru d# �����

which holds for any w vanishing on the boundary �#� This equation is
used to determine Hij for all nodes not belonging to the boundary� Hij

is then extrapolated to the boundary by weakly imposing the condition
�Hij��n � �� with n the normal to �#�

��
� A two�dimensional application example

For the proposed adaptive procedure to be e	ective� both the boundary
mesh and the interior mesh need to be modi�ed� A suitable abstraction of
the boundary is needed� typically by means of B�splines and other geometric
design entities� This renders the implementation quite involved� and our
software up to now only supports �D cases�
Once the computational domain�s boundary and applied forces are de�

�ned� a �rst mesh is constructed� This mesh can be very simple� i�e�� if the
domain is a rectangle� it can consist of just two triangles� This �rst mesh is
then optimized using as metric the euclidean one� so as to get a second mesh
with the desired number of elements� A �nite element computation is carried
out with this second mesh� and with the results a solution�adapted metric
is constructed� The algorithm proceeds optimizing the mesh under this new
metric� �nding a new approximate solution with the improved mesh� and so
on� Once two successive meshes are close enough� the process is said to have
converged� This typically occurs after three to �ve adaptive steps�
As an example� let us apply our adaptive optimization procedure to ana�

lyze the interaction between two cracks� The cracks are in collinear con�g�
uration� with symmetry disturbed by rotation �see Fig� ��� The right crack
is rotated a ten�degree angle� a situation that is known to maximize the in�
teraction ����� This is a quite challenging problem for adaptive techniques�
since the stress intensity factors �SIFs� are not the same for all crack tips�
The right tip of the left crack and the left tip of the right crack have SIFs
about 
�� times those of the remaining two crack tips� An e	ective adaptive
technique should automatically re�ne the mesh near crack tips� with greater
re�nement near those tips of larger SIF�
In Fig� � we show the �rst mesh� with which the process began� the uni�

form mesh after optimization using the euclidean metric� and the adaptively
optimized mesh after four steps� Details of the optimized mesh can be found
in Fig� �� The most critical crack tips have been correctly identi�ed� the
mesh size being approximately � times larger at the outer crack tips than
in the inner ones� In Fig� � we include the isocontours of the von Mises�
equivalent stress near the cracks�

�� Conclusions

As said in the introduction� while in other topics of elasticity and vis�
coelasticity there are several fundamental problems that remain open� the
main di�culties in 
D linear elasticity are of numerical nature� one of the
most challenging ones being the construction of suitable meshes in general
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25

25
1

0.1

10°

1

Figure �� Domain de�nition for the two�crack problem�

 
(a) (b)

(c)

Figure �� �a� First mesh� �b� Uniform mesh with the de�
sired number of elements� �c� Adaptively optimized mesh�
��
� nodes� ��
� elements�
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(a)

(b) (c)

(d) (e)

Figure 	� Details of the optimized mesh�

domains� By suitable meshes we understand meshes consisting of elements
that exhibit both the appropriate shape and the appropriate size to avoid
excessive numerical inaccuracies�
We have presented a full mesh optimization procedure that deals with

both shape and size within a uni�ed methodology� It was �rst shown to



�� GUSTAVO C� BUSCAGLIA� ENZO A� DARI� AND PABLO D� ZAVATTIERI

Figure 
� Isocontours of the von Mises� equivalent stress
computed on the optimized mesh�

work for 
D meshes� as it eliminates the few badly�distorted elements that
usually persist after the initial generation step �it was shown� in addition�
that shape distortions can have an impact on accuracy of the same order as
that of mesh size�� Later� as the method is valid for any number of space
dimensions but our implementation is limited to �D� it was shown that�
in fact� the optimizer can be used to generate adaptively re�ned meshes
starting from !almost nothing! �i�e�� a mesh as simple as that of Fig� ��a���
In this way� it is now possible to solve problems in elasticity or other

�elds that were not tractable a few years ago� and mesh optimization tech�
niques have proved to be a valuable help for this purpose� Besides the full
implementation handling 
D geometric abstractions� that is under way� an
interesting extension concerns time�dependent problems� If the regions de�
serving re�nement evolve with time� it is not obvious that the optimization
algorithm as proposed above will be able to follow this evolution with a fast
enough convergence rate to make it practical�
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